Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
2.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37293114

RESUMO

Macrophages and dendritic cells have long been appreciated for their ability to migrate to and engulf dying cells and debris, including some of the billions of cells that are naturally eliminated from our body daily. However, a substantial number of these dying cells are cleared by 'non-professional phagocytes', local epithelial cells that are critical to organismal fitness. How non-professional phagocytes sense and digest nearby apoptotic corpses while still performing their normal tissue functions is unclear. Here, we explore the molecular mechanisms underlying their multifunctionality. Exploiting the cyclical bouts of tissue regeneration and degeneration during the hair cycle, we show that stem cells can transiently become non-professional phagocytes when confronted with dying cells. Adoption of this phagocytic state requires both local lipids produced by apoptotic corpses to activate RXRα, and tissue-specific retinoids for RARγ activation. This dual factor dependency enables tight regulation of the genes requisite to activate phagocytic apoptotic clearance. The tunable phagocytic program we describe here offers an effective mechanism to offset phagocytic duties against the primary stem cell function of replenishing differentiated cells to preserve tissue integrity during homeostasis. Our findings have broad implications for other non-motile stem or progenitor cells which experience cell death in an immune-privileged niche.

3.
Science ; 374(6571): eabh2444, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34822296

RESUMO

Immune and tissue stem cells retain an epigenetic memory of inflammation that intensifies sensitivity to future encounters. We investigated whether and to what consequence stem cells possess and accumulate memories of diverse experiences. Monitoring a choreographed response to wounds, we found that as hair follicle stem cells leave their niche, migrate to repair damaged epidermis, and take up long-term foreign residence there, they accumulate long-lasting epigenetic memories of each experience, culminating in post-repair epigenetic adaptations that sustain the epidermal transcriptional program and surface barrier. Each memory is distinct, separable, and has its own physiological impact, collectively endowing these stem cells with heightened regenerative ability to heal wounds and broadening their tissue-regenerating tasks relative to their naïve counterparts.


Assuntos
Células Epidérmicas/citologia , Epigênese Genética , Folículo Piloso/citologia , Células-Tronco/fisiologia , Adaptação Fisiológica , Animais , Movimento Celular , Cromatina/metabolismo , Células Epidérmicas/fisiologia , Homeostase , Inflamação , Camundongos , Regeneração , Nicho de Células-Tronco , Transcriptoma , Cicatrização
4.
Nat Cell Biol ; 22(11): 1396, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33046885

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Cell Biol ; 22(7): 779-790, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451440

RESUMO

Tissue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma. We find that oncogenic EpdSCs are serine auxotrophs whose growth and self-renewal require abundant exogenous serine. When extracellular serine is limited, EpdSCs activate de novo serine synthesis, which in turn stimulates α-ketoglutarate-dependent dioxygenases that remove the repressive histone modification H3K27me3 and activate differentiation programmes. Accordingly, serine starvation or enforced α-ketoglutarate production antagonizes squamous cell carcinoma growth. Conversely, blocking serine synthesis or repressing α-ketoglutarate-driven demethylation facilitates malignant progression. Together, these findings reveal that extracellular serine is a critical determinant of EpdSC fate and provide insight into how nutrient availability is integrated with stem cell fate decisions during tumour initiation.


Assuntos
Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/patologia , Células Epidérmicas/patologia , Ácidos Cetoglutáricos/metabolismo , Serina/metabolismo , Células-Tronco/patologia , Animais , Carcinoma de Células Escamosas/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Células Epidérmicas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Células-Tronco/metabolismo
6.
Methods Mol Biol ; 2045: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29845579

RESUMO

Changes in muscle stem cell (MuSC) function during aging have been assessed using various in vivo and ex vivo systems. However, changes in clonal complexity within the aged MuSC pool are relatively understudied. Although the dissection of stem cell heterogeneity has greatly benefited from several technological advancements, including single cell sequencing, these methods preclude longitudinal measures of individual stem cell behavior. Instead, multicolor labeling systems enable lineage tracing with single cell resolution. Here, we describe a method of inducibly labeling MuSCs with the Brainbow-2.1 multicolor lineage tracing reporter in vivo to track individual MuSC fate and assess clonal complexity in the overall MuSC pool throughout the mouse lifespan.


Assuntos
Envelhecimento/fisiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/química , Músculo Esquelético/citologia , Mioblastos/citologia , Coloração e Rotulagem/métodos , Células-Tronco/citologia , Animais , Linhagem da Célula , Análise por Conglomerados , Crioultramicrotomia , Genes Reporter/efeitos dos fármacos , Genes Reporter/genética , Camundongos , Microscopia Confocal , Software , Fluxo de Trabalho
7.
Cell Stem Cell ; 22(1): 119-127.e3, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249462

RESUMO

The clonal complexity of adult stem cell pools is progressively lost during homeostatic turnover in several tissues, suggesting a decrease in the number of stem cells with distinct clonal origins. The functional impact of reduced complexity on stem cell pools, and how different tissue microenvironments may contribute to such a reduction, are poorly understood. Here, we performed clonal multicolor lineage tracing of skeletal muscle stem cells (MuSCs) to address these questions. We found that MuSC clonal complexity is maintained during aging despite heterogenous reductions in proliferative capacity, allowing aged muscle to mount a clonally diverse, albeit diminished, response to injury. In contrast, repeated bouts of tissue repair cause a progressive reduction in MuSC clonal complexity indicative of neutral drift. Consistently, biostatistical modeling suggests that MuSCs undergo symmetric expansions with stochastic fate acquisition during tissue repair. These findings establish distinct principles that underlie stem cell dynamics during homeostatic aging and muscle regeneration.


Assuntos
Envelhecimento/fisiologia , Homeostase , Músculo Esquelético/citologia , Células-Tronco/citologia , Cicatrização , Animais , Adesão Celular , Linhagem da Célula , Células Clonais , Camundongos Endogâmicos C57BL , Modelos Biológicos , Regeneração , Processos Estocásticos
8.
Stem Cell Reports ; 9(4): 1328-1341, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28890163

RESUMO

Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.


Assuntos
Imagem Molecular , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Homeostase do Telômero , Encurtamento do Telômero , Telômero , Fatores Etários , Animais , Suscetibilidade a Doenças , Feminino , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fenótipo , Reprodutibilidade dos Testes , Telômero/genética , Telômero/metabolismo
9.
ACS Nano ; 11(4): 3851-3859, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28323411

RESUMO

Injection of skeletal muscle progenitors has the potential to be a minimally invasive treatment for a number of diseases that negatively affect vasculature and skeletal muscle, including peripheral artery disease. However, success with this approach has been limited because of poor transplant cell survival. This is primarily attributed to cell death due to extensional flow through the needle, the harsh ischemic environment of the host tissue, a deleterious immune cell response, and a lack of biophysical cues supporting exogenous cell viability. We show that engineering a muscle-specific microenvironment, using a nanofibrous decellularized skeletal muscle extracellular matrix hydrogel and skeletal muscle fibroblasts, improves myoblast viability and maturation in vitro. In vivo, this translates to improved cell survival and engraftment and increased perfusion as a result of increased vascularization. Our results indicate that a combinatorial delivery system, which more fully recapitulates the tissue microenvironment, can improve cell delivery to skeletal muscle.


Assuntos
Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Músculo Esquelético/metabolismo , Nanofibras/química , Engenharia Tecidual , Animais , Células Cultivadas , Microambiente Celular , Matriz Extracelular/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Camundongos , Nanofibras/administração & dosagem
10.
Methods Mol Biol ; 1460: 53-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27492165

RESUMO

Models of skeletal muscle injury in animal models are invaluable tools to assess muscle stem cell (MuSC)-mediated tissue repair. The optimization and comprehensive evaluation of these approaches have greatly improved our ability to assess MuSC regenerative potential. Here we describe the procedures for skeletal muscle injury with notexin and BaCl2 and assessment of the dynamics of tissue regeneration.


Assuntos
Compostos de Bário/efeitos adversos , Cloretos/efeitos adversos , Venenos Elapídicos/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/patologia , Animais , Modelos Animais de Doenças , Imuno-Histoquímica/métodos , Camundongos , Regeneração
11.
Trends Cell Biol ; 26(6): 434-444, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26948993

RESUMO

The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.


Assuntos
Homeostase , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Animais , Compartimento Celular , Autorrenovação Celular , Humanos , Modelos Biológicos
12.
Bio Protoc ; 5(16)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27668269

RESUMO

Fluorescence Activated Cell Sorting (FACS) is a sensitive and accurate method for purifying satellite cells, or muscle stem cells, from adult mouse skeletal muscle (Liu et al., 2013; Sacco et al., 2008; Tierney et al., 2014). Mechanical and enzymatic digestion of hind limb muscles releases mononuclear muscle cells into suspension. This protocol employs fractionation strategies to deplete cells expressing the cell surface markers CD45, CD31, CD11b and Ly-6A/E-Sca1, both by magnetic separation and FACS-based exclusion, and positively select for cells expressing a7-integrin and CD34. This enables the researcher to successfully enrich satellite cells that uniformly express the paired-box transcription factor Pax7 and are capable of long-term self-renewal, skeletal muscle repair and muscle stem cell pool repopulation.

13.
Mol Biol Cell ; 25(6): 852-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430868

RESUMO

Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.


Assuntos
Calpaína/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Tropomodulina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Calpaína/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Estrutura Terciária de Proteína , Proteólise , Tropomodulina/genética
14.
Tissue Eng Part A ; 16(9): 2871-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20412030

RESUMO

Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.


Assuntos
Células da Medula Óssea/citologia , Matriz Extracelular/química , Transplante de Células-Tronco Mesenquimais/métodos , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Músculo Esquelético/cirurgia , Engenharia Tecidual/métodos , Animais , Desmina/metabolismo , Imuno-Histoquímica , Masculino , Miogenina/metabolismo , Ratos
15.
J Strength Cond Res ; 24(3): 757-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20145563

RESUMO

Accurate assessments of aerobic capacity are essential to ensuring the health and well-being of firefighters, given their arduous and stressful working conditions. The use of a submaximal protocol, if proven accurate, addresses concerns such as administrative cost, time, and ease of test performance. The purposes of this study were to develop and validate graded submaximal and maximal stairmill protocols and to develop accurate maximal and submaximal equations to predict peak VO2 using both the stairmill and Gerkin treadmill protocols. Fifty-four subjects, men (36.3 +/- 5.6 years) and women (36.4 +/- 6.3 years), performed maximal graded exercise tests using both the stairmill and Gerkin treadmill protocols. Significant predictors of peak VO2 included body mass index, time to completion for maximal protocols, and time to 85% of predicted maximal heart rate for submaximal protocols. Maximal prediction equations were more accurate on both the treadmill (R = 0.654, standard error of the estimate [SEE] = 3.73 ml x kg(-1) x min(-1)) and stairmill (R = 0.816, SEE = 2.89 ml x kg(-1) x min(-1)) than developed submaximal prediction equations for both the treadmill (R = 0.325, SEE = 5.20 ml x kg(-1) x min(-1)) and stairmill (R = 0.480, SEE = 4.85 ml x kg(-1) x min(-1)). Both of the newly developed submaximal prediction equations more accurately predict peak VO2 than the current Gerkin equation. In summary, we support the use of both the stairmill and treadmill as a means for aerobic assessment in this population. The use of the developed submaximal prediction equations should lead to a reduced cost and time of assessment; however, direct measurement of maximal oxygen consumption remains the better alternative.


Assuntos
Teste de Esforço/métodos , Exercício Físico/fisiologia , Aptidão Física/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Valor Preditivo dos Testes , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...